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Abstract—Irradiation of trans-2-butenyl 1-cyano-2-naphthylmethyl ether 1b afforded two kinds of intramolecular (2�+2�)
photocycloadducts at the 1,2- and 3,4-positions in a stereoselective manner. The product ratio was dependent on the solvent
polarity based on the nature of the exciplex. © 2001 Elsevier Science Ltd. All rights reserved.

Inter- and intramolecular (2�+2�) photocycloaddition
of alkenes to aromatic rings has been widely investi-
gated from synthetic and mechanistic viewpoints.1–3 In
these photocycloaddition reactions, an exciplex is often
postulated as a common reactive intermediate to
explain the regio- and stereoselectivity. In general, the
nature of an electronically excited complex (exciplex)
between electron-donating and electron-accepting
molecules (D and A) can be formulated by a combina-
tion of exciton resonance and charge-transfer configu-
ration, which will be described by the following wave
function (Eq. (1)): where the ratio (c1+c2)/(c3+c4) and
with this the relative contributions from exciton and
charge-transfer configurations may vary depending on
the reaction system.4 However, organic photochemical
reactions have been simply exemplified as either exciton
resonances or charge-transfer states. In most cases, the

nature of the exciplex in the preparative photoreactions
was ambiguous.

�(exciplex)=c1�(A*D)+c2�(AD*)+c3�(A+D−)+
c4�(A−D+) (1)

From both the synthetic and mechanistic viewpoints, it
is important to clarify the nature of the exciplex, which
reflects the regio-, stereo-, site-, and chemoselectivity.
Previously, McCullough et al. have reported an
intramolecular (2�+2�) photocycloaddition of 1-cyano-
2-naphthylmethyl 2,3-dimethyl-2-butenyl ether (1a) to
give 2a and 3a in good yields via an intramolecular
exciplex.2 Recently, we have independently reported a
regioselective intramolecular (2�+2�) photocycloaddi-
tion of 1a and its derivatives in the presence of Eu(III)
salt.5 However, the solvent effect in these photoreac-
tions had not yet been clarified. We now report a new

Scheme 1.
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aspect of the site-selective intramolecular (2�+2�) pho-
tocycloaddition of trans-2-butenyl 1-cyano-2-naphthyl-
methyl ether (1b) depending on the solvent polarity
based on the nature of the exciplex.

Irradiation of a benzene solution containing 1b (30
mM) through a Pyrex filter (>280 nm light) under an
argon atmosphere gave (2�+2�) cycloadduct 2b (49%)
at the 1,2-position on the naphthalene ring, 3b (8%) at
the 3,4-position, and recovery of 1b (40%), respectively
(Scheme 1).6 Irradiation of photocycloadducts 2a,b in
benzene afforded cycloreversed products 1a,b.3,7 On the
other hand, 3a–c did not give 1a–c. The time depen-
dence on the product ratio in the photoreaction of 1a,b
showed that 2a,b is initially produced as a major
product and further irradiation afforded 3a,b as a
competitive process. Finally, 3a,b is obtained as a
major product.5

The solvent effect for the formation of 2a and 3a was
not observed both in non-polar (benzene) and polar
solvents (acetonitrile).2,5 In the case of the photoreac-
tion of 1b, the yield (conversion: <20%) for the forma-
tion of 2b was independent of the solvent polarity, but
that for 3b increased with increasing solvent polarity
f(�, n),8 as shown in Fig. 1.9 Total yields increased with
increasing solvent polarity. In addition, the photo-
cycloreversion of 2b was not dependent on the solvent
polarity. From these results, the polar exciplex is postu-
lated for the formation of 3b at the 3,4-position of the
excited singlet state of the 1-cyanonaphthalene ring,10

and the exciton resonance contributes to the formation
of 2b at its 1,2-position.

The photoreaction of allyl 1-cyano-2-naphthylmethyl
ether (1c) supports this explanation. In benzene, 1c did
not afford the intramolecular photocycloadduct at all,
but in acetonitrile slowly gave 3c exclusively.10 The
photoreaction of 1c in acetonitrile was accelerated by
about a factor of two by the addition of Mg(ClO4)2

(5.0×10−3 M).11 The site-selective photoaddition at the
3,4-position in polar solvents can be reasonably
explained in terms of the highest electron density of the

Figure 2. Calculated atom electron density for the naphtha-
lene ring of the radical anion of 1-cyano-2-methylnaphthalene
(1-CN−�).

4-position in the radical anion (1-CN−�) of 1-cyano-2-
methylnaphthalene as a model compound of 1, which is
calculated by PM-3 calculation (Fig. 2).12

In conclusion, we have found that the product ratio in
the intramolecular photocycloaddition of 1b was
remarkably dependent on solvent polarity and this was
reasonably explained by the nature of the exciplex. The
less reactive 1c exclusively afforded 3c in acetonitrile.
The photocycloaddition of less reactive alkenes in polar
solvents occurs at the position of the highest electron
density. We believe that this is the first example of
site-selective photoaddition depending on solvent
polarity.
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